Definite Integration Question 12

Question: $ [ \sum\limits _{n=1}^{10}{\int _{-2n-1}^{2n}{{{\sin }^{27}}xdx}} ]+[ \sum\limits _{n=1}^{10}{\int_2n^{2n+1}{{{\sin }^{27}}xdx}} ] $ equals

[MP PET 2002]

Options:

A) $ 27^{2} $

B) $ -54 $

C) 36

D) 0

Show Answer

Answer:

Correct Answer: D

Solution:

$ \sum\limits _{n=1}^{10}{\int _{-2n-1}^{2n}{{{\sin }^{27}}xdx+}}\sum\limits _{n=1}^{10}{\int_2n^{2n+1}{{{\sin }^{27}}xdx}} $
In the first summation put $ x=-t $
$ \sum\limits _{n=1}^{10}{{{\sin }^{27}}(-t)(-dt)+\sum\limits _{n=1}^{10}{\int_2n^{2n+1}{{{\sin }^{27}}xdx}}} $

$ =-\sum\limits _{n=1}^{10}{\int_2n^{2n+1}{{{\sin }^{27}}}xdx+}\sum\limits _{n=1}^{10}{\int_2n^{2n+1}{{{\sin }^{27}}}xdx=0} $ .