Definite Integration Question 120
$ \int_0^{2n\pi }{( |\sin x| - | \frac{1}{2}\sin x | )}\ dx $
[Orissa JEE 2005]
Options:
n
2n
-2n
D) None of these
Show Answer
Answer:
Correct Answer: B
Solution:
$ \int_0^{2n\pi }{( |\sin x|-\frac{1}{2}|\sin x| )}\ dx $ = $ \frac{1}{2}\int_0^{2n\pi }{\|\sin x|dx} $
$ =\frac{2n}{2}\times 2\int_0^{\pi /2}{\sin x\ dx}=2n[-\cos x]_0^{\pi /2}=2n. $