Definite Integration Question 120

Question: $ \int_0^{2n\pi }{( |\sin x|-. | \frac{1}{2}\sin x . | )}\ dx $ equals

[Orissa JEE 2005]

Options:

A) n

B) 2n

C) -2n

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \int_0^{2n\pi }{( |\sin x|-\frac{1}{2}|\sin x| )}\ dx $ = $ \frac{1}{2}\int_0^{2n\pi }{\|\sin x|dx} $

$ =\frac{2n}{2}\times 2\int_0^{\pi /2}{\sin x\ dx=2n}[-\cos x]_0^{\pi /2}=2n. $