Definite Integration Question 121

Question: Area inside the parabola $ y^{2}=4ax, $ between the lines $ x=a $ and $ x=4a $ is equal to

[Pb. CET 2002; Karnataka CET 2005]

Options:

A) $ 4a^{2} $

B) $ 8a^{2} $

C) $ 28\frac{a^{2}}{3} $

D) $ 35\frac{a^{2}}{3} $

Show Answer

Answer:

Correct Answer: C

Solution:

We have $ y^{2}=4ax $

therefore $ y=2\sqrt{ax} $

We know the equations of lines $ x=a $ and $ x=4a $

The area inside the parabola between the lines $ A=\int_a^{4a}{ydx}=\int_a^{4a}{2\sqrt{ax}}dx=2\sqrt{a}\int_a^{4a}{{x^{\frac{1}{2}}}dx=2\sqrt{a}[ \frac{{x^{\frac{3}{2}}}}{\frac{3}{2}} ]}_a^{4a} $

$ =\frac{4}{3}{a^{\frac{1}{2}}}[ {{(4a)}^{\frac{3}{2}}}-{{(a)}^{\frac{3}{2}}} ]=\frac{4}{3}{a^{\frac{1}{2}}}{a^{\frac{3}{2}}}[8-1] $

$ =\frac{28}{3}a^{2} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें