Definite Integration Question 121

Question: Area inside the parabola $ y^{2}=4ax, $ between the lines $ x=a $ and $ x=4a $ is equal to

[Pb. CET 2002; Karnataka CET 2005]

Options:

A) $ 4a^{2} $

B) $ 8a^{2} $

C) $ 28\frac{a^{2}}{3} $

D) $ 35\frac{a^{2}}{3} $

Show Answer

Answer:

Correct Answer: C

Solution:

We have $ y^{2}=4ax $

therefore $ y=2\sqrt{ax} $

We know the equations of lines $ x=a $ and $ x=4a $

The area inside the parabola between the lines $ A=\int_a^{4a}{ydx}=\int_a^{4a}{2\sqrt{ax}}dx=2\sqrt{a}\int_a^{4a}{{x^{\frac{1}{2}}}dx=2\sqrt{a}[ \frac{{x^{\frac{3}{2}}}}{\frac{3}{2}} ]}_a^{4a} $

$ =\frac{4}{3}{a^{\frac{1}{2}}}[ {{(4a)}^{\frac{3}{2}}}-{{(a)}^{\frac{3}{2}}} ]=\frac{4}{3}{a^{\frac{1}{2}}}{a^{\frac{3}{2}}}[8-1] $

$ =\frac{28}{3}a^{2} $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index