Definite Integration Question 124

Question: If $ f(x)=\int_a^{x}{t^{3}e^{t}dt,} $ then $ \frac{d}{dx}f(x)= $

[MP PET 1989]

Options:

A) $ e^{x}(x^{3}+3x^{2}) $

B) $ x^{3}e^{x} $

C) $ a^{3}e^{a} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ f(x)=\int_a^{x}{t^{3}e^{t}dt=\int_a^{0}{t^{3}.e^{t}dt+\int_0^{x}{t^{3}e^{t}dt}}} $

$ \Rightarrow \frac{df(x)}{dx}=\frac{d}{dx}( \int_a^{0}{t^{3}.e^{t}dt} )+\frac{d}{dx}( \int_0^{x}{t^{3}.e^{t}dt} )=x^{3}e^{x} $ .