Definite Integration Question 126

Question: $ \int _{\ -\pi }^{\pi }{\frac{{{\sin }^{4}}x}{{{\sin }^{4}}x+{{\cos }^{4}}x}\ dx}= $

[Kerala (Engg.) 2005]

Options:

A) $ \pi /4 $

B) $ \pi /2 $

C) $ 3\pi /2 $

D) $ 2\pi $

E) $ \pi $

Show Answer

Answer:

Correct Answer: E

Solution:

$ I=\int _{-\pi }^{\pi }{\frac{{{\sin }^{4}}x}{{{\sin }^{4}}x+{{\cos }^{4}}x}\ dx} $

$ \therefore $ $ I=2\times 2\int_0^{\pi /2}{\frac{{{\sin }^{4}}x}{{{\sin }^{4}}x+{{\cos }^{4}}x}\ dx} $

…..(i) $ I=4\int_0^{\pi /2}{\frac{{{\sin }^{4}}( \frac{\pi }{2}-x )}{{{\sin }^{4}}( \frac{\pi }{2}-x )+{{\cos }^{4}}( \frac{\pi }{2}-x )}\ dx} $

$ I=4\int_0^{\pi /2}{\frac{{{\cos }^{4}}x}{{{\cos }^{4}}x+{{\sin }^{4}}x}\ dx} $ …..(ii)

Adding (i) and (ii) we get,

$ 2I=4\int_0^{\pi /2}{dx=4\times \frac{\pi }{2}=2\pi } $

therefore $ I=\pi $ .