Definite Integration Question 127

Question: If f is continuous function, then

[Kerala (Engg.) 2005]

Options:

A) $ \int _{-2}^{2}{f(x)dx=\int_0^{2}{[f(x)-f(-x)]dx}} $

B) $ \int _{-3}^{5}{2f(x)dx=\int _{-6}^{10}{f(x-1)dx}} $

C) $ \int _{-3}^{5}{f(x)dx=\int _{-4}^{4}{f(x-1)dx}} $

D) $ \int _{-3}^{5}{f(x)dx=\int _{-2}^{6}{f(x-1)dx}} $

E) $ \int _{-3}^{5}{f(x)dx=\int _{-6}^{10}{f(x/2)]dx}} $

Show Answer

Answer:

Correct Answer: D

Solution:

Since, f is continues function. Let $ x=t-1 $

$ \therefore $ $ dx=dt $ . When $ x=-3\to 5 $ , then $ t=-2\to 6 $

Therefore, $ \int _{-3}^{5}{f(x)dx} $

$ =\int _{-2}^{6}{f(t-1)dt=}\int _{-2}^{6}{f(x-1)dx} $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index