Definite Integration Question 130

Question: The area bounded by $ y=x^{2}+3 $ and $ y=2x+3 $ is (in sq. units)

Options:

A) $ \frac{12}{7} $

B) $ \frac{4}{3} $

C) $ \frac{3}{4} $

D) $ \frac{8}{3} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Given curves are $ y=x^{2}+3 $ and $ y=2x+3 $ points of intersection are (0, 3) and (2, 7)
$ \therefore $ Required area $ =| \int\limits_0^{2}{(x^{2}-2x)dx} |=| \frac{x^{3}}{3}-\frac{2x^{2}}{2} |_0^{2} $

$ =| \frac{8}{3}-4 |=\frac{4}{3} $ sq. unit