Definite Integration Question 132

Question: The area of the smaller segment cut off from the circle $ x^{2}+y^{2}=9byx=1 $ is

Options:

A) $ \frac{1}{2}(9se{c^{-1}}3-\sqrt{8}) $ sq. unit

B) $ (9se{c^{-1}}3-\sqrt{8}) $ sq. unit

C) $ (\sqrt{8}-9se{c^{-1}}3) $ sq. unit

D) None of the above

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Given, equation of the circle is $ x^{2}+y^{2}=9 $ .
$ \therefore $

Area of the smaller segment cut off from the circle $ x^{2}+y^{2} $ = 9 by x = 1, is given by

$ A=2\int_1^{3}{\sqrt{9-x^{2}}dx}=2\cdot \frac{1}{2}[ x\sqrt{9-x^{2}}+9{{\sin }^{-1}}\frac{x}{3} ]_1^{3} $

$ =[ 3\cdot \sqrt{9-9}+9{{\sin }^{-1}}( \frac{3}{3} )-1.\sqrt{9-1}-9{{\sin }^{-1}}( \frac{1}{3} ) ] $

$ =[9{{\sec }^{-1}}(3)-\sqrt{8}] $ sq. unit.