Definite Integration Question 137

Question: The area bounded by $ y=-x^{2}+2x+3 $ and $ y=0 $ is

[Orissa JEE 2004]

Options:

A) $ 32 $

B) $ \frac{32}{3} $

C) $ \frac{1}{32} $

D) $ \frac{1}{3} $

Show Answer

Answer:

Correct Answer: B

Solution:

Given, $ y=-x^{2}+2x+3 $ and $ y=0 $

Therefore, $ x=-1 $ and $ x=3 $

Required area $ =\int _{-1}^{3}{(-x^{2}+2x+3)dx} $

$ =[ -\frac{x^{3}}{3}+x^{2}+3x ] _{-1}^{3}=\frac{32}{3} $ .