Definite Integration Question 137
Question: The area bounded by $ y=-x^{2}+2x+3 $ and $ y=0 $ is
[Orissa JEE 2004]
Options:
A) $ 32 $
B) $ \frac{32}{3} $
C) $ \frac{1}{32} $
D) $ \frac{1}{3} $
Show Answer
Answer:
Correct Answer: B
Solution:
Given, $ y=-x^{2}+2x+3 $ and $ y=0 $
Therefore, $ x=-1 $ and $ x=3 $
Required area $ =\int _{-1}^{3}{(-x^{2}+2x+3)dx} $
$ =[ -\frac{x^{3}}{3}+x^{2}+3x ] _{-1}^{3}=\frac{32}{3} $ .