Definite Integration Question 139

Question: The triangle formed by the tangent to the curve $ f(x)=x^{2}+bx-b $ at the point (1, 1) and the coordinate axes, lies in the first quadrant. If its area is 2, then the value of b is

Options:

A) -1

B) 3

C) -3

D) 1

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ f(x)=x^{2}+bx-b;f’(x)=2x+b $

$ \Rightarrow f’(1)=b+2 $ Equation of tangent: $ y-1=(b+2)(x-1) $ Putting $ x=0\Rightarrow y=1-b-2=-b-1>0 $

$ \Rightarrow b<-1 $ Putting $ y=0\Rightarrow x-1=-\frac{1}{b+2}\Rightarrow x=\frac{-1}{b+2}+1 $ $ =\frac{b+1}{b+2}>0\Rightarrow b<-2 $ or $ b>-1 $ Combining, the two conditions $ =b<-2 $ Now, $ \frac{1}{2}| -b-1 || \frac{b+1}{b+2} |=2;{{(b+1)}^{2}}=4| b+2 | $ $ =-4b-8 $

$ \Rightarrow {{(b+3)}^{2}}=0\Rightarrow b=-3 $ follows the condition $ b<-2 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें