Definite Integration Question 142

Question: The area bounded by the curve $ y^{2}(2a-x)=x^{3} $ and the line $ x=2a $ is

Options:

A) $ 3\pi a^{2} $ sq. unit

B) $ \frac{3\pi a^{2}}{2} $ sq. unit

C) $ \frac{3\pi a^{2}}{4} $ sq. unit

D) $ \frac{6\pi a^{2}}{5} $ sq. unit

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Let the equation of curve $ y^{2}(2a-x)=x^{3}…(i) $ and equation of line $ x=2a…(ii) $ The given curve is symmetrical about x-axis and passes through origin.

From (i) we have, $ y^{2}=\frac{x^{3}}{2a-x} $

But $ \frac{x^{3}}{2a-x}<0 $ for $ x>2a $ and $ x<0 $ So, curve does not lie in the portion $ x>2a $ and $ x<0 $ , therefore curve lies in $ 0\le x\le 2a $ .

$ \therefore $ Area bounded by the curve and line $ =\int\limits_0^{2a}{ydx=\int\limits_0^{2a}{\frac{{x^{3/2}}}{\sqrt{2a}-x}dx}} $ Put $ x=2a{{\sin }^{2}}\theta $ and $ dx=4a\sin \theta \cos \theta d\theta $

$ \therefore I=\int\limits_0^{\pi /2}{8a^{2}{{\sin }^{4}}\theta d\theta =8a^{2}[ \frac{3}{4}.\frac{1}{2}.\frac{\pi }{2} ]} $ $ =\frac{3\pi a^{2}}{2} $ sq. unit



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें