Definite Integration Question 143

Question: The value of $ \int _{0}^{1}{\frac{{{\tan }^{-1}}x}{1+x^{2}}dx} $ is

[RPET 2001]

Options:

A) $ \pi /4 $

B) $ {{\pi }^{2}}/32 $

C) 1

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ I=\int_0^{1}{\frac{{{\tan }^{-1}}x}{1+x^{2}}dx} $ ; Put $ {{\tan }^{-1}}x=t $

therefore $ \frac{1}{1+x^{2}}dx=dt $

$ \therefore I=\int _{0}^{\pi /4}{tdt} $

$ =[ \frac{t^{2}}{2} ]_0^{\pi /4} $

$ =\frac{{{\pi }^{2}}}{32} $ .