Definite Integration Question 152

Question: The area enclosed between the curves $ y=x^{3} $ and $ y=\sqrt{x} $ is, (in square units)

[Karnataka CET 2004]

Options:

A) $ \frac{5}{3} $

B) $ \frac{5}{4} $

C) $ \frac{5}{12} $

D) $ \frac{12}{5} $

Show Answer

Answer:

Correct Answer: C

Solution:

Given curves are, $ y=x^{3} $ and $ y=\sqrt{x} $

On solving, we get $ x=0,x=1 $

Therefore, required area = $ \int_0^{1}{(x^{3}-\sqrt{x})}dx $

$ =[ \frac{x^{4}}{4}-\frac{2x\sqrt{x}}{3} ]_0^{1}=[ \frac{1}{4}-\frac{2}{3} ]=\frac{5}{12} $ ,(Area can-t be negative).