Definite Integration Question 154

Question: The area bounded by the curve $ y=f(x),y=x $ and the lines $ x=1,x=t $ is $ (t+\sqrt{1+t^{2}})-\sqrt{2}-1 $ sq. unit, for all t > 1. If f(x) satisfying f(x)>x for all x>1, then f(x) is equal to

Options:

A) $ x+1+\frac{x}{\sqrt{1+x^{2}}} $

B) $ x+\frac{x}{\sqrt{1+x^{2}}} $

C) $ 1+\frac{x}{\sqrt{1+x^{2}}} $

D) $ \frac{x}{\sqrt{1+x^{2}}} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] It is given that, $ f(x)>x $ , for all $ x>1 $ . So, area bounded by $ y=f(x),y=x $ and the lines $ x=1,x=t $ is given by $ \int_1^{t}{{f(x)-x}dx} $

But this area is given equal to $ (t+\sqrt{1+t^{2}}-\sqrt{2}-1) $ sq. unit. Therefore, $ \int_1^{t}{{f(x)-x}dx=t+\sqrt{1+t^{2}}-\sqrt{2}-1,} $ for all t>1

On differentiating both sides w.r.t. t, we get $ f(t)-t=1+\frac{t}{\sqrt{1+t^{2}}} $ for all $ t>1 $
$ \Rightarrow f(t)=t+1+\frac{t}{\sqrt{1+t^{2}}} $ for all $ t>1 $

Hence, $ f(x)=x+1+\frac{x}{\sqrt{1+x^{2}}} $ for all $ x>1 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें