Definite Integration Question 156

Question: The value of c + 2 for which the area of the figure bounded by the curve $ y=8x^{2}-x^{5} $ , the straight lines $ x=1 $ and $ x=c $ and x-axis is equal to $ \frac{16}{3}, $ is

Options:

A) 1

B) 3

C) -1

D) 4

Show Answer

Answer:

Correct Answer: A

Solution:

[a] (1) For $ c<1,\int_c^{1}{(8x^{2}-x^{5})dx=\frac{16}{3}} $

$ \Rightarrow \frac{8}{3}-\frac{1}{6}-\frac{8c^{3}}{3}+\frac{c^{6}}{6}=\frac{16}{3} $

$ \Rightarrow c^{3}[ -\frac{8}{3}+\frac{c^{3}}{6} ]=\frac{17}{6} $ .

Again, for $ c\ge 1, $ none of the values of c satisfy the required condition that $ \int_1^{c}{(8x^{2}-x^{5})dx=\frac{16}{3}\Rightarrow c+2=1} $ .