Definite Integration Question 157

Question: $ \int_0^{\pi }{x\log \sin x}dx= $

Options:

A) $ \frac{\pi }{2}\log \frac{1}{2} $

B) $ \frac{{{\pi }^{2}}}{2}\log \frac{1}{2} $

C) $ \pi \log \frac{1}{2} $

D) $ {{\pi }^{2}}\log \frac{1}{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ I=\int_0^{\pi }{x\log \sin xdx} $ ……(i) = $ \int_0^{\pi }{(\pi -x)\log \sin (\pi -x)dx} $ …..(ii)

By adding (i) and (ii), we get

$ 2I=\int_0^{\pi }{\pi }\log \sin xdx\Rightarrow I=\frac{2\pi }{2}\int_0^{\pi /2}{\log \sin xdx} $

$ =\pi ( \frac{\pi }{2}\log \frac{1}{2} )=\frac{{{\pi }^{2}}}{2}\log \frac{1}{2} $ .