Definite Integration Question 159

What is the area of the portion of the curve $ y=\sin x $ , lying between $ x=0 $ and $ x=2\pi $ ?

Options:

A) 1 square unit

B) 2 square units

C) 4 square units

D) 8 square units

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Required area $ =\int\limits_0^{2\pi }{|\sin x|dx} $

$ =-\cos . x |_0^{2\pi }=-\cos 2\pi -(-\cos 0) $

$ =-\cos (\pi +\pi )+1=-[-\cos \pi ]+1 $

$ =+\cos ( \frac{\pi }{2}+\frac{\pi }{2} )+1 $

$ =\sin \frac{\pi }{2}+1=1+1=2 $ sq. units.



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index