Definite Integration Question 161

Question: What is the area bounded by the curves $ y=e^{x},y={e^{-x}} $ and the straight line $ x=1 $ -

Options:

A) $ ( e+\frac{1}{e} ) $ sq. unit

B) $ ( e-\frac{1}{e} ) $ sq. unit

C) $ ( e+\frac{1}{e}-2 ) $ sq. unit

D) $ ( e-\frac{1}{e}-2 ) $ sq. unit

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Given equations of curves are $ y=e^{x} $ and $ y={e^{-x}} $ .
$ \Rightarrow e^{x}=\frac{1}{e^{x}}\Rightarrow e^{2x}=e^{0}\Rightarrow x=0 $ Also, equation of straight line gives $ x=1 $
$ \therefore $ Required area $ =\int\limits_0^{1}{(e^{x}-{e^{-x}})dx} $

$ =[ e^{x}+{e^{-x}} ]_0^{1}=e+{e^{-1}}-e^{0}+{e^{-0}} $

$ =( e+\frac{1}{e}-2 ) $ sq unit



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें