Definite Integration Question 17

Question: If $

[x] $ denotes the greatest integer less than or equal to $ x, $ then the value of the integral $ \int_0^{2}{x^{2}[x]dx} $ equals [Kurukshetra CEE 1996; Pb. CET 2001]

Options:

A) 5/3

B) 7/3

C) 8/3

D) 4/3

Show Answer

Answer:

Correct Answer: B

Solution:

$ \int_0^{2}{x^{2}[x]dx=\int_0^{1}{x^{2}(0)dx+\int_1^{2}{x^{2}(1)dx=0+[ \frac{x^{3}}{3} ]}_1^{2}=\frac{7}{3}}} $ .