Definite Integration Question 170

Question: The area of the region enclosed by the curves $ y=x\log x $ and $ y=2x-2x^{2} $ is

Options:

A) $ \frac{5}{12} $

B) $ \frac{7}{12} $

C) 1

D) $ \frac{4}{7} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Curve tracing, $ y=x{\log _{e}}x $ Clearly $ x>0 $ , For $ 0<x<1,x{\log _{e}}x<0, $ and for $ x>1,x{\log _{e}}x>0 $ Also $ x{\log _{e}}x=0 $ or $ x=1 $

Further $ \frac{dy}{dx}=0\Rightarrow 1+{\log _{e}}x=0 $ or $ x=1/e $ , which is point of minima. Required area $ =\int\limits_0^{1}{(2x-2x^{2})dx-\int\limits_0^{1}{x\log xdx}} $

$ =[ x^{2}-\frac{2x^{3}}{3} ]_0^{1}-[ \frac{x^{2}}{2}\log x-\frac{x^{2}}{4} ]_0^{1} $

$ =( 1-\frac{2}{3} )-[ 0-\frac{1}{4}-\frac{1}{2}\underset{x\to 0}{\mathop{\lim }}x^{2}\log x ]=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें