Definite Integration Question 171

Question: The area bounded by the curves $ y=f(x), $ the x-axis, and the ordinates $ x=1 $ and $ x=b $ is $ (b-1)\sin (3b+4) $ . Then $ f(x) $ is

Options:

A) $ (x-1)\cos (3x+4) $

B) $ sin(3x+4) $

C) $ \sin (3x+4)+3(x-1)\cos (3x+4) $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Given $ \int_1^{b}{f(x)dx=(b-1)\sin (3b+4)} $ Differentiating both sides w.r.t. b, we get

$ \Rightarrow f(b)=3(b-1)\cos (3b+4)+\sin (3b+4) $

$ \Rightarrow f(x)=\sin (3x+4)+3(x-1)\cos (3x+4) $ .