Definite Integration Question 177

Question: Area bounded by the curve $ xy^{2}=a^{2}(a-x) $ and y-axis is

Options:

A) $ \pi a^{2}/2 $ sq. units

B) $ \pi a^{2} $ sq. units

C) $ 3\pi a^{2} $ sq. units

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ xy^{2}=a^{2}(a-x)\Rightarrow x=\frac{a^{3}}{y^{2}+a^{2}} $ The given curve is symmetrical about x-axis, and meets it at (a, 0).

The line $ x=0 $ , i.e., y-axis is an asymptote. Area $ =\int\limits_0^{\infty }{xdy}=2\int\limits_0^{\infty }{\frac{a^{3}}{y^{2}+a^{2}}dx} $

$ =2a^{2}\frac{1}{a}[ {{\tan }^{-1}}\frac{y}{a} ]_0^{\infty } $

$ =2a^{2}\frac{\pi }{2}=\pi a^{2} $ sq. units