Definite Integration Question 178

Question: The figure shows as triangle AOB and the parabola $ y=x^{2} $ . The ratio of the area of the triangle AOB to the area of the region AOB of the parabola $ y=x^{2} $ is equal to

Options:

A) $ \frac{3}{5} $

B) $ \frac{3}{4} $

C) $ \frac{7}{8} $

D) $ \frac{5}{6} $

Show Answer

Answer:

Correct Answer: B

Solution:

Area of $ \Delta AOB=\frac{1}{2}\times 2a\times a=a^{2} $ units

Area of region AOB $ =2\int\limits_0^{a}{xdy=2\int\limits_0^{a}{\sqrt{y}dy=2[ \frac{{y^{3/2}}}{3/2} ]_0^{a}=\frac{4}{3}a^{3}}} $ units

$ \therefore $ ratio of areas $ =\frac{a^{3}}{\frac{4}{3}a^{3}}=\frac{3}{4} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें