Definite Integration Question 178

Question: The figure shows as triangle AOB and the parabola $ y=x^{2} $ . The ratio of the area of the triangle AOB to the area of the region AOB of the parabola $ y=x^{2} $ is equal to

Options:

A) $ \frac{3}{5} $

B) $ \frac{3}{4} $

C) $ \frac{7}{8} $

D) $ \frac{5}{6} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Area of $ \Delta AOB=\frac{1}{2}\times 2a\times a^{2}=a^{3} $ units

Area of region AOB $ =2\int\limits_0^{a^{2}}{xdy=2\int\limits_0^{a^{2}}{\sqrt{y}dy=2[ \frac{{y^{3/2}}}{3/2} ]_0^{a^{2}}=\frac{4}{3}a^{3}}} $ units

$ \therefore $ ratio of areas $ =\frac{a^{3}}{\frac{4}{3}a^{3}}=\frac{3}{4} $