Definite Integration Question 186

Question: If the area enclosed by $ y^{2}=4ax $ and line $ y=ax $ is 1/3 sq. units , then the area enclosed by $ y=4x $ with same parabola is

Options:

A) 8 sq. units

B) 4 sq. units

C) 4/3 sq. units

D) 8/3 sq. units

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Point of intersection of $ y^{2}=4ax $ and $ y=ax $ are (0, 0) and $ ( \frac{4}{a},4 ) $ Given $ \int\limits_0^{4}{[ \frac{y}{a}-\frac{y^{2}}{4a} ]dy=\frac{1}{3}} $

$ \Rightarrow \frac{8}{a}-\frac{1}{12a}\times 64=\frac{1}{3}\Rightarrow \frac{8}{3a}=\frac{1}{3}\Rightarrow a=8 $ So, the parabola is $ y^{2}=32x $ Area enclosed by $ y=4x $ is $ \int\limits_0^{8}{[ \frac{y}{4}-\frac{y^{2}}{32} ]dy=[ \frac{y^{2}}{8}-\frac{y^{3}}{96} ]}_0^{8}=\frac{8}{3} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें