Definite Integration Question 192

Question: $ \int _{2}^{3}{\frac{dx}{x^{2}-x}=} $

[EAMCET 2002]

Options:

A) $ \log (2/3) $

B) $ \log (1/4) $

C) $ \log (4/3) $

D) $ \log (8/3) $

Show Answer

Answer:

Correct Answer: C

Solution:

$ I=\int_2^{3}{\frac{dx}{x^{2}-x}} $

$ =\int_2^{3}{\frac{dx}{x(x-1)}} $

$ =\int_2^{3}{[ \frac{1}{x-1}-\frac{1}{x} ]}dx $

$ =\int_2^{3}{\frac{1}{(x-1)}}dx-\int_2^{3}{\frac{1}{x}dx} $

$ =[\log (x-1)]_2^{3}-[\log x]_2^{3} $

$ =[\log 2-\log 1]-[\log 3-\log 2] $

$ =2\log 2-\log 3=\log \frac{4}{3} $ .