Definite Integration Question 201

Question: $ \int_0^{\pi /2}{\frac{\cos x-\sin x}{1+\sin x\cos x}}dx= $

[Karnataka CET 2004]

Options:

A) 2

B) $ -2 $

C) 0

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \int_0^{\pi /2}{\frac{\cos x-\sin x}{1+\sin x\cos x}dx=I} $ ……(i) Now $ I=\int_0^{\pi /2}{\frac{\cos ( \frac{\pi }{2}-x )-\sin ( \frac{\pi }{2}-x )}{1+\sin ( \frac{\pi }{2}-x )\cos ( \frac{\pi }{2}-x )}dx} $

= $ \int_0^{\pi /2}{\frac{\sin x-\cos x}{1+\sin x\cos x}dx} $

…..(ii) On adding, $ 2I=0\Rightarrow I=0 $ .