Definite Integration Question 209

Question: $ \underset{n\to \infty }{\mathop{\lim }}[ \frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+…..\frac{1}{2n} ]= $

[Karnataka CET 1999]

Options:

A) 0

B) $ {\log _{e}}4 $

C) $ {\log _{e}}3 $

D) $ {\log _{e}}2 $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \underset{n\to \infty }{\mathop{lim}}[ \frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+…..+\frac{1}{2n} ] $

= $ \underset{n\to \infty }{\mathop{lim}}[ \frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+….+\frac{1}{n+n} ] $

$ =\frac{1}{n}\underset{n\to \infty }{\mathop{lim}}[ 1+\frac{1}{1+\frac{1}{n}}+\frac{1}{1+\frac{2}{n}}+….+\frac{1}{1+\frac{n}{n}} ] $

$ =\frac{1}{n}\underset{n\to \infty }{\mathop{lim}}\sum\limits _{r=0}^{n}{[ \frac{1}{1+\frac{r}{n}} ]} $

$ =\int_0^{1}{\frac{1}{1+x}dx} $

$ =[{\log _{e}}(1+x)]_0^{1}={\log _{e}}2-{\log _{e}}1={\log _{e}}2 $ .