Definite Integration Question 217

Question: $ \int_a^{b}{\frac{\log x}{x}dx=} $

[MP PET 1994]

Options:

A) $ \log ( \frac{\log b}{\log a} ) $

B) $ \log (ab)\log ( \frac{b}{a} ) $

C) $ \frac{1}{2}\log (ab)\log ( \frac{b}{a} ) $

D) $ \frac{1}{2}\log (ab)\log ( \frac{a}{b} ) $

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ I=\int_a^{b}{\frac{1}{x}\log xdx=(\log x\log x)_a^{b}} $

$ -\int_a^{b}{\frac{1}{x}\log xdx} $

$ \Rightarrow 2I=[{{(\log x)}^{2}}]_a^{b}\Rightarrow I=\frac{1}{2}[{{(\log b)}^{2}}-{{(\log a)}^{2}}] $

$ =\frac{1}{2}[(\log b+\log a)(\log b-\log a)] $ = $ \frac{1}{2}\log (ab)\log ( \frac{b}{a} ) $ .