Definite Integration Question 223

Question: The area bounded by the curves $ y=\ln x $ , $ y=\ln |x| $ , $ y=|\ln x| $ and $ y=|\ln |x|| $ is

[AIEEE 2002]

Options:

A) 4 sq. unit

B) 6 sq. unit

C) 10 sq. unit

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

We know that $ \log x $ is defined for $ x>0 $ and $ \log |x| $ is defined for all $ x\in R-{0} $
Also $ |\log x|\ge 0 $ and $ |\log |x||\ge 0 $

$ \therefore $ Required area is symmetrical in all the four quadrants and is equal to $ =4\int_0^{1}{|\log x|dx=-4\int_0^{1}{\log xdx}} $ , ( $ \because $ In $ (0,1),\log x<0) $ = $ -4[x\log x-x]_0^{1}=-4(-1)=4 $ sq.unit, $ ( \because \underset{x\to 0}{\mathop{\lim }}x\log x=0 ) $ .