Definite Integration Question 23

Question: If $ f(x) $ is an odd function of $ x, $ then $ \int _{-\frac{\pi }{2}}^{\frac{\pi }{2}}{f(\cos x)dx} $ is equal to

[MP PET 1998]

Options:

A) 0

B) $ \int_0^{\frac{\pi }{2}}{f(\cos x)dx} $

C) $ 2\int_0^{\frac{\pi }{2}}{f(\sin x)dx} $

D) $ \int_0^{\pi }{f(\cos x)dx} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ f(\cos x) $ is an even function. $ \because f(\cos (-x))=f(\cos x) $

$ \therefore \int _{-\pi /2}^{\pi /2}{f(\cos x)dx=2\int_0^{\pi /2}{f(\cos x)dx}} $

$ =2\int_0^{\pi /2}{f(\sin x)dx} $ .