Definite Integration Question 231

Question: $ \int_0^{\infty }{\frac{x^{3}dx}{{{(x^{2}+4)}^{2}}}=} $

Options:

A) 0

B) $ \infty $

C) $ \frac{1}{2} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \int_0^{\infty }{\frac{x^{3}dx}{{{(x^{2}+4)}^{2}}}=\frac{1}{2}}\int_0^{\infty }{\frac{x^{2}2xdx}{{{(x^{2}+4)}^{2}}}dx} $

$ =\frac{1}{2}\int_0^{\infty }{\frac{t}{{{(t+4)}^{2}}}dt} $ , [Putting $ x^{2}=t $ ] $ =\frac{1}{2}\int_0^{\infty }{[ \frac{1}{t+4}-\frac{4}{{{(t+4)}^{2}}} ]dt=\frac{1}{2}[ \log (t+4)+\frac{4}{t+4} ]_0^{\infty }} $

$ =\frac{1}{2}[ \log \infty +0-(\log 4+1) ]=\infty $ .