Definite Integration Question 232

Question: If area bounded by the curves $ y^{2}=4ax $ and $ y=mx $ is $ a^{2}/3, $ , then the value of $ m $ is

Options:

A) 2

B) $ -2 $

C) $ \frac{1}{2} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

The two curves $ y^{2}=4ax $ and $ y=mx $ intersect at $ ( \frac{4a}{m^{2}},\frac{4a}{m} ) $ and the area enclosed by the two curves is given by $ \int_0^{4a/m^{2}}{(\sqrt{4ax}-mx)}dx $ .
$ \therefore \int_0^{4a/m^{2}}{(\sqrt{4ax}-mx)}dx=\frac{a^{2}}{3} $

therefore $ \frac{8}{3}\frac{a^{2}}{m^{3}}=\frac{a^{2}}{3}\Rightarrow m^{3}=8\Rightarrow m=2 $ .