Definite Integration Question 240

Question: The least value of the function $ F(x)= $

$ \int _{5\pi /4}^{x}{(3\sin u+4\cos u)du} $ on the interval $ [ \frac{5\pi }{4},\frac{4\pi }{3} ] $ is

Options:

A) $ \sqrt{3}+\frac{3}{2} $

B) $ -2\sqrt{3}+\frac{3}{2}+\frac{1}{\sqrt{2}} $

C) $ \frac{3}{2}+\frac{1}{\sqrt{2}} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

We have $ F’(x)=3\sin x+4\cos x $

Since in $ [ \frac{5\pi }{4},\frac{4\pi }{3} ],F’(x)<0, $ so assume the least value at the point $ x=\frac{4\pi }{3}. $

Thus, $ f( \frac{4\pi }{3} )=\int _{5\pi /4}^{4\pi /3}{(3\sin u+4\cos u)du} $

$ =\frac{3}{2}-2\sqrt{3}+\frac{1}{\sqrt{2}} $ .