Definite Integration Question 245

Question: $ \int_0^{1}{{{\tan }^{-1}}xdx=} $

[Karnataka CET 1993; RPET 1997]

Options:

A) $ \frac{\pi }{4}-\frac{1}{2}\log 2 $

B) $ \pi -\frac{1}{2}\log 2 $

C) $ \frac{\pi }{4}-\log 2 $

D) $ \pi -\log 2 $

Show Answer

Answer:

Correct Answer: A

Solution:

Put $ x=\tan \theta \Rightarrow dx={{\sec }^{2}}\theta d\theta $

Also as $ x=0,\theta =0 $ and $ x=1,\theta =\frac{\pi }{4} $

Therefore, $ \int_0^{1}{{{\tan }^{-1}}xdx=\int_0^{\pi /4}{\theta {{\sec }^{2}}\theta d\theta }} $

$ =\frac{\pi }{4} $ $ -\log \sqrt{2}=\frac{\pi }{4}-\frac{1}{2}\log 2 $ .