Definite Integration Question 246

Question: $ \int_0^{\pi /2}{\frac{{{\sin }^{3/2}}xdx}{{{\cos }^{3/2}}x+{{\sin }^{3/2}}x}}= $

[Roorkee 1989; BIT Ranchi 1989]

Options:

A) 0

B) $ \pi $

C) $ \pi /2 $

D) $ \pi /4 $

Show Answer

Answer:

Correct Answer: D

Solution:

Let $ I=\int_0^{\pi /2}{\frac{{{\sin }^{3/2}}xdx}{{{\cos }^{3/2}}x+{{\sin }^{3/2}}x}} $ ……(i) = $ \int_0^{\pi /2}{\frac{{{\sin }^{3/2}}( \frac{\pi }{2}-x )}{{{\cos }^{3/2}}( \frac{\pi }{2}-x )+{{\sin }^{3/2}}( \frac{\pi }{2}-x )}dx} $

= $ \int_0^{\pi /2}{\frac{{{\cos }^{3/2}}xdx}{{{\sin }^{3/2}}x+{{\cos }^{3/2}}x}} $ ……(ii)

Adding (i) and (ii), we get $ I=\frac{1}{2}\int_0^{\pi /2}{1dx=\frac{1}{2}[x]_0^{\pi /2}=\frac{\pi }{4}} $ .