Definite Integration Question 247

Question: The greatest value of the function $ F(x)=\int_1^{x}{|t|dt} $ on the interval $ [ -\frac{1}{2},\frac{1}{2} ] $ is given by

[IIT Screening]

Options:

A) $ \frac{3}{8} $

B) $ -\frac{1}{2} $

C) $ -\frac{3}{8} $

D) $ \frac{2}{5} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ F’(x)=|x|>0\forall x\in [ -\frac{1}{2},\frac{1}{2} ] $

Hence the function is increasing on $ [ -\frac{1}{2},\frac{1}{2} ] $ and therefore $ F(x) $ has maxima at the right end point of $ [ -\frac{1}{2},\frac{1}{2} ] $ .

therefore $ MaxF(x)=F( \frac{1}{2} )=\int_1^{1/2}{|t|}dt=-\frac{3}{8} $ .