Definite Integration Question 247

Question: The greatest value of the function $ F(x)=\int_1^{x}{|t|dt} $ on the interval $ [ -\frac{1}{2},\frac{1}{2} ] $ is given by

[IIT Screening]

Options:

A) $ \frac{3}{8} $

B) $ -\frac{1}{2} $

C) $ -\frac{3}{8} $

D) $ \frac{2}{5} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ F’(x)=|x|>0\forall x\in [ -\frac{1}{2},\frac{1}{2} ] \setminus {0} $

Hence the function is increasing on $ [ -\frac{1}{2},\frac{1}{2} ] $ and therefore $ F(x) $ has maxima at the right end point of $ [ -\frac{1}{2},\frac{1}{2} ] $ .

therefore $ MaxF(x)=F( \frac{1}{2} )=\int_{1/2}^{1}{|t|}dt=\frac{3}{8} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें