Definite Integration Question 256

Question: The value of $ \int_a^{a+(\pi /2)}{({{\sin }^{4}}x+{{\cos }^{4}}x)dx} $ is

Options:

A) Independent of $ a $

B) $ a{{( \frac{\pi }{2} )}^{2}} $

C) $ \frac{3\pi }{8} $

D) $ \frac{3\pi a^{2}}{8} $

Show Answer

Answer:

Correct Answer: C

Solution:

Since $ {{\sin }^{4}}x+{{\cos }^{4}}x $ is a periodic function with period $ \frac{\pi }{2}, $ therefore $ \int_a^{a+(\pi /2)}{({{\sin }^{4}}x+{{\cos }^{4}}x)dx} $

$ =\int_0^{\pi /2}{({{\sin }^{4}}x+{{\cos }^{4}}x)dx} $

$ =2\int_0^{\pi /2}{{{\sin }^{4}}xdx=\frac{3\Gamma (5/2)\Gamma (1/2)}{2\Gamma ( \frac{4+0+2}{2} )}=\frac{3\pi }{8}} $ .