Definite Integration Question 259

Question: $ \int_0^{1}{\frac{dx}{{{[ax+b(1-x)]}^{2}}}}= $

[SCRA 1986]

Options:

A) $ \frac{a}{b} $

B) $ \frac{b}{a} $

C) $ ab $

D) $ \frac{1}{ab} $

Show Answer

Answer:

Correct Answer: D

Solution:

Let $ I=\int_0^{1}{\frac{dx}{{{[(a-b)x+b]}^{2}}}} $

Put $ t=(a-b)x+b\Rightarrow dt=(a-b)dx $

As $ x=1\Rightarrow t=a $ and $ x=0\Rightarrow t=b $ , then $ I=\frac{1}{a-b}\int_b^{a}{\frac{1}{t^{2}}}dt=\frac{1}{(a-b)}[ -\frac{1}{t} ]_b^{a}=\frac{1}{(a-b)}( \frac{a-b}{ab} )=\frac{1}{ab} $ .