Definite Integration Question 26

Question: $ \int_0^{\pi /2}{\frac{\sin x}{\sin x+\cos x}dx} $ equals

[RPET 1996; Kerala (Engg.) 2002]

Options:

A) $ \frac{\pi }{2} $

B) $ \frac{\pi }{3} $

C) $ \frac{\pi }{4} $

D) $ \frac{\pi }{6} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ I=\int_0^{\pi /2}{\frac{\sin x.dx}{\sin x+\cos x}}=\int_0^{\pi /2}{\frac{\cos x.dx}{\cos x+\sin x}} $ , $ ( \because \int_0^{a}{f(x)dx=\int_0^{a}{f(a-x)dx}} ) $

$ 2I=\int_0^{\pi /2}{dx}\Rightarrow I=\frac{\pi }{4} $ .