Definite Integration Question 265

Question: $ \int _{0}^{\infty }{\frac{x\ln xdx}{{{(1+x^{2})}^{2}}}} $ is equal to

[AMU 2000]

Options:

A) 0

B) 1

C) $ \infty $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ I=\int_0^{\infty }{\frac{x\log x}{{{(1+x^{2})}^{2}}}dx} $

Put $ x=\tan \theta $

therefore $ dx={{\sec }^{2}}\theta d\theta $

$ \therefore $ I $ =\int_0^{\pi /2}{\frac{\tan \theta \log (\tan \theta )}{{{\sec }^{4}}\theta }}{{\sec }^{2}}\theta d\theta $

$ =\int_0^{\pi /2}{\sin \theta \cos \theta \log (\tan \theta )d\theta } $

$ =\frac{1}{2}\int_0^{\pi /2}{\sin 2\theta \log (\tan \theta )d\theta } $

$ =0 $ , $ { \because \int_0^{\pi /2}{\sin 2\theta \log \tan \theta d\theta =0} } $ .