Definite Integration Question 266

Question: The value of $ \int_1^{2}{\frac{dx}{x(1+x^{4})}} $ is

[MP PET 2004]

Options:

A) $ \frac{1}{4}\log \frac{17}{32} $

B) $ \frac{1}{4}\log \frac{17}{2} $

C) $ \log \frac{17}{2} $

D) $ \frac{1}{4}\log \frac{32}{17} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \int_1^{2}{\frac{dx}{x(1+x^{4})}=\int_1^{2}{\frac{dx}{x^{5}( 1+\frac{1}{x^{4}} )}}} $

Put $ ( 1+\frac{1}{x^{4}} )=z\Rightarrow \frac{-4}{x^{5}}dx=dz $

therefore $ \frac{-1}{4}\int_2^{17/16}{\frac{dz}{z}=[ \frac{-1}{4}\log z ]_2^{17/16}} $ = $ \frac{1}{4}\log 2-\frac{1}{4}\log \frac{17}{16} $

therefore $ I=\frac{1}{4}\log ( \frac{32}{17} ) $ .