Definite Integration Question 268

Question: $ \int _{-\pi /2}^{\pi /2}{\log ( \frac{2-\sin \theta }{2+\sin \theta } )d\theta =} $

Options:

A) 0

B) 1

C) 2

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Since $ f(-\theta )=\log {{( \frac{2-\sin \theta }{2+\sin \theta } )}^{-1}}=-\log ( \frac{2-\sin \theta }{2+\sin \theta } )=-f(\theta ) $

$ \therefore $ $ f(x) $ is an odd function of $ x $ . Therefore, $ 2\int_0^{\pi /2}{\log ( \frac{2-\sin \theta }{2+\sin \theta } )d\theta =0} $ .