Definite Integration Question 272

Question: If $ \int_0^{k}{\frac{dx}{2+8x^{2}}}=\frac{\pi }{16}, $ then $ k= $

Options:

A) 1

B) $ \frac{1}{2} $

C) $ \frac{1}{4} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \int_0^{k}{\frac{1}{2+8x^{2}}dx=\frac{1}{2}\int_0^{k}{\frac{dx}{1+{{(2x)}^{2}}}=\frac{1}{4}\int_0^{2k}{\frac{dt}{1+t^{2}}}}} $

$ =\frac{1}{4}|{{\tan }^{-1}}t|_0^{2k}=\frac{1}{4}{{\tan }^{-1}}2k $ . Comparing it with the given value, we get $ {{\tan }^{-1}}2k=\frac{\pi }{4}\Rightarrow 2k=1\Rightarrow k=\frac{1}{2} $ .