Definite Integration Question 278

Question: The value of $ \int_2^{3}{\frac{x+1}{x^{2}(x-1)}dx} $ is

[MP PET 2004]

Options:

A) $ 2\log 2-\frac{1}{6} $

B) $ \log \frac{16}{9}-\frac{1}{6} $

C) $ \log \frac{4}{3}-\frac{1}{6} $

D) $ \log \frac{16}{9}+\frac{1}{6} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ I=\int_2^{3}{\frac{x+1}{x^{2}(x-1)}}dx=\int_2^{3}{( \frac{A}{x^{2}}+\frac{B}{x}+\frac{C}{x-1} )}dx $

$ A(x-1)+B(x)(x-1)+C(x^{2})=x+1 $

Put $ x=0,1,-1, $ we get $ A=-1,B=-2,C=2 $

therefore $ I=-\int_2^{3}{\frac{dx}{x^{2}}-2\int_2^{3}{\frac{dx}{x}+2\int_2^{3}{\frac{dx}{x-1}}}} $

therefore $ I=[ \frac{1}{x} ]_2^{3}-2[\log x]_2^{3}+2[\log (x-1)]_2^{3} $

therefore $ I=\frac{1}{3}-\frac{1}{2}-2\log \frac{3}{2}+2\log 2 $

therefore $ I=\log \frac{16}{9}-\frac{1}{6} $ .