Definite Integration Question 28

Question: $ \int _{-1}^{1}{x{{\tan }^{-1}}xdx} $ equals

[RPET 1997]

Options:

A) $ ( \frac{\pi }{2}-1 ) $

B) $ ( \frac{\pi }{2}+1 ) $

C) $ (\pi -1) $

D) 0

Show Answer

Answer:

Correct Answer: A

Solution:

$ I=\int _{-1}^{1}{x{{\tan }^{-1}}xdx=2}\int_0^{1}{x{{\tan }^{-1}}xdx} $

$ \because x{{\tan }^{-1}}x $ is an even function $ I=[2\frac{x^{2}}{2}{{\tan }^{-1}}x]_0^{1}-2\int_0^{1}{\frac{1}{2}\frac{x^{2}}{1+x^{2}}dx} $

$ I=[x^{2}{{\tan }^{-1}}x]_0^{1}-\int_0^{1}{\frac{x^{2}+1-1}{1+x^{2}}dx} $

I = $ [x^{2}{{\tan }^{-1}}x]_0^{1}-[x]_0^{1}+[{{\tan }^{-1}}x]_0^{1} $

therefore $ I=\frac{\pi }{4}-1+\frac{\pi }{4}=\frac{\pi }{2}-1 $ .