Definite Integration Question 285

Question: Given that $ \int_0^{\infty }{\frac{x^{2}dx}{(x^{2}+a^{2})(x^{2}+b^{2})(x^{2}+c^{2})}=\frac{\pi }{2(a+b)(b+c)(c+a)}}, $ then the value of $ \int_0^{\infty }{\frac{x^{2}dx}{(x^{2}+4)(x^{2}+9)}} $ is

[Karnataka CET 1993]

Options:

A) $ \frac{\pi }{60} $

B) $ \frac{\pi }{20} $

C) $ \frac{\pi }{40} $

D) $ \frac{\pi }{80} $

Show Answer

Answer:

Correct Answer: A

Solution:

Put $ a=2, $

$ b=3 $ and $ c=0 $ in the given integral and you get the value of required integral as given in option.