Definite Integration Question 286

Question: $ \int _{\pi /4}^{\pi /2}{\cos \theta cose{c^{2}}\theta d\theta =} $

[Roorkee 1978]

Options:

A) $ \sqrt{2}-1 $

B) $ 1-\sqrt{2} $

C) $ \sqrt{2}+1 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ \int _{\pi /4}^{\pi /2}{\cos \theta \frac{1}{{{\sin }^{2}}\theta }d\theta } $

Put $ t=\sin \theta \Rightarrow dt=\cos \theta d\theta , $ then we have $ \int _{1/\sqrt{2}}^{1}{\frac{1}{t^{2}}dt}=[ \frac{-1}{t} ] _{1/\sqrt{2}}^{1}=\sqrt{2}-1 $ .