Definite Integration Question 292

Question: The area bounded by the curves $ y={\log _{e}}x $ and $ y={{({\log _{e}}x)}^{2}} $ is

[RPET 2000]

Options:

A) $ 3-e $

B) $ e-3 $

C) $ \frac{1}{2}(3-e) $

D) $ \frac{1}{2}(e-3) $

Show Answer

Answer:

Correct Answer: A

Solution:

Required area $ =\int_1^{e}{[\log x-{{(\log x)}^{2}}]}dx $

$ A=\int_1^{e}{\log xdx}-\int_1^{e}{{{(\log x)}^{2}}dx} $

$ =[x\log x-x] _1^{e}-[x{{(\log x)}^{2}}-2x\log x+2x] _1^{e} $

$ =[e-e-(-1)]-[e{{(1)}^{2}}-2e+2e-(2)] $

$ =(1)-(e-2) $

$ =3-e $ .