Definite Integration Question 293

Question: If the ordinate $ x=a $ divides the area bounded by the curve $ y=( 1+\frac{8}{x^{2}} ), $

$ x- $ axis and the ordinates $ x=2, $

$ x=4 $ into two equal parts, then $ a= $

[IIT 1983]

Options:

A) 8

B) $ 2\sqrt{2} $

C) 2

D) $ \sqrt{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

Let the ordinate at $ x=a $ divide the area into two equal parts Area of $ AMNB $

$ =\int_2^{4}{( 1+\frac{8}{x^{2}} )dx=[ x-\frac{8}{x} ]}_2^{4}=4 $

Area of $ ACDM=\int_2^{a}{( 1+\frac{8}{x^{2}} )}dx=2 $

On solving, we get $ a=\pm 2\sqrt{2} $ ;Since $ a>0 $

therefore $ a=2\sqrt{2} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें