Definite Integration Question 293

Question: If the ordinate $ x=a $ divides the area bounded by the curve $ y=( 1+\frac{8}{x^{2}} ), $

$ x- $ axis and the ordinates $ x=2, $

$ x=4 $ into two equal parts, then $ a= $

[IIT 1983]

Options:

A) 8

B) $ 2\sqrt{2} $

C) 2

D) $ \sqrt{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

Let the ordinate at $ x=a $ divide the area into two equal parts Area of $ AMNB $

$ =\int_2^{4}{( 1+\frac{8}{x^{2}} )dx=[ x-\frac{8}{x} ]}_2^{4}=4 $

Area of $ ACDM=\int_2^{a}{( 1+\frac{8}{x^{2}} )}dx=2 $

On solving, we get $ a=\pm 2\sqrt{2} $ ;Since $ a>0 $

therefore $ a=2\sqrt{2} $ .