Definite Integration Question 297

Question: The area in the first quadrant between $ x^{2}+y^{2}={{\pi }^{2}} $ and $ y=\sin x $ is

[MP PET 1997]

Options:

A) $ \frac{({{\pi }^{3}}-8)}{4} $

B) $ \frac{{{\pi }^{3}}}{4} $

C) $ \frac{({{\pi }^{3}}-16)}{4} $

D) $ \frac{({{\pi }^{3}}-8)}{2} $

Show Answer

Answer:

Correct Answer: A

Solution:

Area of the circle in first quadrant is $ \frac{\pi ({{\pi }^{2}})}{4} $ i.e., $ \frac{{{\pi }^{3}}}{4} $ . Also area bounded by curve $ y=\sin x $ and $ x $ -axis is 2 sq. unit.

Hence required area is $ \frac{{{\pi }^{3}}}{4}-2=\frac{{{\pi }^{3}}-8}{4} $ .